Terminale S - Retour Sommaire - Revoir la leçon 6

(Pensez à utiliser la commande "Précédente" du navigateur et la touche F11 du clavier)

 

EXERCICES 6-G : EFFET DOPPLER

Vitesse d'une voiture

Eloignement des galaxies

 

EXERCICE 1 : Vitesse d'une voiture


Un observateur immobile sur le bord d'une route très droite entend une fréquence fo = 540 Hz provenant de la sirène d'une ambulance qui s'approche avec une vitesse constante VE = 90 km / h.

1 - Calculer la fréquence fE du son émis par la sirène et perçue par le conducteur du véhicule.

2 - Calculer la fréquence fo' du son perçu par l'observateur quand l'ambulance s'éloignera de lui avec la même vitesse de 90 km / h.

La vitesse du son dans l'air est V = 340 m / s.


SOLUTION :


1 -
Calculons la fréquence fE du son émis par la sirène et perçue par le conducteur du véhicule.

Entre les fréquences émise fE et perçue fO existe la relation fO = fE V / (V - VE) (1) (voir la démonstration dans la leçon).

L'ambulance a une vitesse VE = 90 km / h.= 90 000 / 3600 = 25 m / s.

La relation fO = fE V / (V - VE) (1) s'écrit aussi :

fE = fO (V - VE) / V (2)

fE = 540 (340 - 25) / 340

fE = 500,3 Hz = 500 Hz (3)

Le son perçu par l'observateur immobile sur le bord de la route a une fréquence fO = 540 Hz plus élevée que celle du son émis fE = 500,3 Hz par la sirène. Il est plus aigu.


2 - Calculons la fréquence f ' du son perçu par l'observateur immobile sur le bord de la route quand l'ambulance s'éloignera de lui avec la même vitesse de 90 km / h.

La durée de réception d'une seule oscillation sonore est alors plus grande. La fréquence perçue fo' diminue donc.

La relation fO = fE V / (V - VE) (1)devient alors :

fO' = fE V / (V + VE) (2)

fO' = 500 x 340 / (340 + 25)

fO' = 465,7 = 468 Hz (4)

Le son perçu par l'observateur immobile sur le bord a une fréquence fO' = 468 Hz plus petite que celle du son émis fE = 500,3 Hz par la sirène. Il est plus grave.

 

EXERCICE 2 : Eloignement des galaxies

 

La raie de plus grande intensité de l'atome de sodium Na mesurée sur un astre (observateur et sodium immobiles sur l'astre) a pour longueur d'onde :

Astre (Na) = 588,9950 nm = émis

Cette même raie observée par l'observateur immobile sur Terre mais émise par une source (étoile) qui s'éloigne de notre planète avec une vitesse radiale V Etoile a une longueur d'onde :

Terre (Na) = 589,0496 nm = observé

En se servant de cette différence de valeurs calculer la vitesse radiale V Etoile avec laquelle l'étoile s'éloigne de la Terre.

Rappels :

La vitesse de la lumière est C = 3,00 x 10 8 m / s dans le vide et dans l'air.

Une onde électromagnétique émise avec une fréquence fE sur l'étoile est perçue, sur Terre, avec une fréquence plus petite fO lorsque l'émetteur se déplace avec une vitesse VE par rapport à l'observateur terrestre. On a

  VEtoile = C ( fE - fO ) / fO(5) ( valable quand l'étoile s'éloigne de l'observateur terrrestre avec la vitesse VEtoile ) (voir la leçon 6)


SOLUTION :


La relation VEtoile = C ( fE - fO ) / fO (5) peut faire intervenir Terre (Na) et Etoile (Na). En effet :

Terre (Na) = C / fE soit fE = C / Terre (Na) (6)

Etoile (Na) = C / fO soit fO = C / Etoile (Na) (7)

Portons dans :

VEtoile = C ( fE - fO ) / fO (5)

VEtoile = C ( C / Terre (Na) - C / Etoile (Na) ) / ( C / Etoile (Na) )

VEtoile = C ( Etoile (Na) - Terre (Na)) / Terre (Na (6)

Numériquement :

VEtoile = 3 x 10 8 ( 589,0496 - 588,9950 ) / 588,9950

VEtoile = 2,781 x 10 4 m / s = 27,81 km / s (7)

Remarque :

L’analyse de la lumière reçue des étoiles lointaines montre systématiquement un déplacement Doppler-Fizeau vers le rouge. Les galaxies s’éloignent à une vitesse d’autant plus importante qu’elles sont plus loin de la Terre. La théorie du big-bang est en grande partie basée sur ce fait.L’Univers semble s'être formé à partir d’une explosion initiale. Les produits formés en premier sont maintenant les parties les plus lointaines de l’Univers.

 

A VOIR :

Exercice 6-A : Connaissances du cours n° 6.

Exercice 6-B : Aspect ondulatoire de la lumière.

Exercice 6-C : Diffraction de la lumière.

Exercice 6-D : A propos de la lumière (Diffraction - Réfraction - Dispersion).

Exercice 6-E : Mesure d'une longueur d'onde (Interférences lumineuses).

Exercice 6-F : Interférences.

Exercice 6-G : Effet Doppler : Vitesse d'une voiture - Eloignement des galaxies. (ci-dessus)

Exercice 6-H : Surfer sur la vague (Bac 2013 - Amérique du Nord - Exercice 3)

Retour Sommaire